PDM
sayHello();

‘ Android

android Services AiDL

Contents PDN

sayHello();

* Broadcast Receivers
— System
— Custom
— Static
— Dynamic

 Shared Preferences

Broadcast Receiver PDM

sayHello();

* Android component

 Similar to a
publish/subscribe
design pattern

* Listen for events
— Eg: battery low

e Eventis described
through an Intent

Broadcast types PDME
* System * Custom
— Sent by the Android — Sent by apps
System Defined inside the
Public events defined in application
Intent class

Eg: battery low

System broadcast intents: link

https://developer.android.com/about/versions/11/reference/broadcast-intents-30

sayHello();

Creating a broadcast receiver POM E

's MyBroadcastReceiver: BroadcastReceiver() {
orride fun onReceive(p®: Context?, pl: Intent?) {
Log.d(TA $p1")

TODO: do actions specific to the intent received

.toString()

Declaring a broadcast PO

sayHello();

* Static registration * Dynamic registration
(AndroidManifest) — Registered through
— Always active Context

— Active while the
registering context is
active

Declare static broadcast PDM

sayHello();

<!l-- If this receiver listens for broadcasts sent from the system or from
other apps, even other apps that you own, set android:exported to "true". -->

<receiver android:name=".MyBroadcastReceiver"” android:exported="false">
<intent-filter>
<action android:name="APP_SPECIFIC_BROADCAST 7"
</intent-filter>
</receiver>

Steps:
* Declare the receiver using a <receiver> tag
e Declare an intent filter for the receiver

Note: if you want to receive events from other components
than your application (from the system, from other apps) you
must set the android:exported property to true

Declare dynamic broadcasts PO

sayHello();

val broadcastReceiver = MyBroadcastReceiver()
val intentFilter = IntentFilter(Intent.
1L receiverFlags = Context.

"his.registerReceiver(broadcastReceiver, intentFilter, receiverFlags)

Steps:

* Create an instance of the receiver

* Create an instance of the IntentFilter

* Choose wheter the receiver should be exported or not
* Register the receiver

Note: context registered receivers will receive
broadcasts as long as their registering context is valid

Sending broadcasts PDM'

Intent().also { intent ->
intent.setAction("com.example.broadcast.MY_NOTIFICATION")
intent.putExtra("data", "Nothing to see here, move along.")
sendBroadcast(intent)

Receive with permission PON

sayHello();

Declaration

<receiver android:name=".MyBroadcastReceiver"
android:permission="android.permission.BLUETOOTH_CONNECT">
<intent-filter>
<action android:name="android.intent.action.ACTION_FOUND" />
</intent-filter>
</receiver>

var filter = IntentFilter(Intent.ACTION_FOUND)
registerReceiver(receiver, filter, Manifest.permission.BLUETOOTH_CONNECT, null)

Sender

<uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />

10

Send with permission

PDM

sayHello();

Sender:

sendBroadcast(Intent(BluetoothDevice.ACTION_FOUND),
Manifest.permission.BLUETOOTH_CONNECT)

Receiver:

<uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />

11

Shared Preferences DM E

* Save small collections of < File-based storage

data — XML file
— Eg: Settings, — In app’s private storage
configurations area
* Persistant across app — One app can store

multiple files

* Public or private

sessions

e Data is saved as key-
value pairs

12

Why use multiple files? PDM

sayHello();

* Organizational purposes: °* Performance

to group related data optimisations: smaller

— Eg: settings, user data, files are faster to read
cache — Note: too many files could
* Modular design: different be hard to manage as well

parts of the app can
manage its data

13

sayHello();

How to: retrieve shared prefs PDM

* Get preference by file name

val sharedPref = activity?.getSharedPreferences(
getString(R.string.preference_file_key), Context.MODE_PRIVATE)

e QGet activity default shared preferences

val sharedPref = activity?.getPreferences(Context.MODE_PRIVATE)

14

sayHello();

How to: write to shared prefs PDM

val sharedPref = activity?.getPreferences(Context.MODE_PRIVATE) ?: return
with (sharedPref.edit()) {

putInt(getString(R.string.saved_high_score_key), newHighScore)
apply()

Steps:
* Create an editor
 Add a new value
— putint, putString, etc
e Call apply() or commit() to save

Note: apply() will save the in-memory reference

and write to disk later while commit() will write to disk synchronously .

How to: read from shared prefs PDM

sayHello();

val sharedPref = activity?.getPreferences(Context.MODE_PRIVATE) ?: return
val defaultValue = resources.getInteger(R.integer.saved_high_score_default_key)
val highScore = sharedPref.getInt(getString(R.string.saved_high_score_key), defaultValue)

16

Questions

PDM

sayHello();

17

